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Preface

A common practice in reliability engineering is to

utilize available component sample data to derive a point

estimate of the reliability of each component. This thesis

is a continuation of previous work accomplished at the Air

Force Institute of Technology on reliability estimation.

Its purpose is to indicate the manner in which a modified

Double Monte Carlo technique can be utilized to derive

confidence interval estimations of system reliability based

on sample component data.

I wish to express my sincere appreciation to

Professor Jon R. Hobbs for his guidance and expertise

toward completion of this study and to Professor Albert H.

Moore for suggesting this topic and his encouragement and

guidance throughout its development.

ii



Contents

Page

Preface..................... .. . . .. .. .. .. . . ...

List of Figures......................V

List of Tables ...................... vi

Abstract.........................vii

1. Introduction .....................

Problem Statement..................
Background .................... 2
Reliability...................4
The Weibull Distribution. ............ 5
Assumptions...................6
Confidence Limits.................6
Objective.....................8
Approach......................9

Ii. Theoretical Development .............. 11

Estimators....................11
Method of Maximum Likelihood ........... 12
Component Reliability .............. 14
System Reliability.................15
Bias of Reliability Estimate ........... 16
Median Rank Values.................17

III. Procedure.....................21

Double Monte Carlo Method............21
Calculating/Verifying System Confidence

Limits.....................23
Components....................26
Systems to be Analyzed .............. 26

IV. Results......................29

V. Conclusions and Recommendations...........37

Conclusions...................37
Recommendations..................38

Bibliography ....................... 39

Appendix A: Notes....................42



Page

Appendix B: Flow Diagram.................45

Appendix C: Computer Program Listing..........47

VITA...........................60

iv



List of Figures

Figure Page

1 Weibull Distribution with Shape
Parameters of 1, 2, and 3.5 ..... .......... 7

2 Sample Empirical Distribution with
Shape = 2.0 and Scale 250 ... .......... . 23

3 Systems 1, 2, 3, and 4 .... ............ 27

V



List of Tables

Table Page

I Bias of R(t) ...... ................. . 18

II Bias of R(t) ...... ................. . 19

III System 1 Confidence Interval Coverage of
the True System Reliability ... .......... . 30

IV System 2 Confidence Interval Coverage of
the True System Reliability ... .......... . 30

V System 3 Confidence Interval Coverage of
the True System Reliability ... .......... . 31

VI System 4 Confidence Interval Coverage of
the True System Reliability ... .......... . 31

VII CPU Times on the CDC Cyber ... .......... 33

VIII System 1 Comparison of Modified Double
Monte Carlo and Univariate ... .......... 34

IX System 2 Comparison of Modified Double
Monte Carlo and Univariate ... .......... 34

X System 3 Comparison of Modified Double
Monte Carlo and Univariate ... .......... 35

XI System 4 Comparison of Modified Double
Monte Carlo with Univariate and Bivariate . . . 35

vi



AFIT/GOR/OS/80D-5

Abstract

A digital computer technique is developed, using a

modified Double Monte Carlo simulation, which determines

lower confidence limits for system reliability based on com-

ponent test data. This test data is assumed to have failure

times which are distributed according to a known two-

parameter Weibull probability distribution. The first step

of the modified Double Monte Carlo technique is to randomly

generate these failure times using the true shape and scale

parameters of each component. The component distribution

shape and scale parameters are then estimated by the method

of maximum-likelihood from these component failure times.

The second step of this technique is to reestimate these

component shape and scale parameters using generated samples

whose failures have the same distribution and parameters as

the estimated ones and the same number of observations as

the original test data. The method of maximum-likelihood

is again used to estimate these component parameters. These

twice estimated parameters are then substituted into the

reliability equation to obtain the maximum-likelihood esti-

mator for the component reliability. The estimated bias in

this estimator is subtracted to yield an approximately

unbiased estimator of component reliability. A given number

of component reliabilities are obtained and used with the

median rank values to construct an empirical distribution

vii



for each component. The desired number of estimates are

then sampled from these distributions to obtain a system

reliability. Using this technique, where the distribution

or joint distribution of the estimators is unknown, a

Monte Carlo simulation is run for four hypothetical systems

consisting of as many as five components. Since the true

reliability is known, it can be determined if the desired

confidence intervals contain the true system rp'iability.

The result is a measure of the effectiveness of the modified

Double Monte Carlo technique.
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A MODIFIED DOUBLE MONTE CARLO TECHNIQUE TO APPROXIMATE
RELIABILITY CONFIDENCE LIMITS OF SYSTEMS WITH

COMPONENTS CHARACTERIZED BY THE
WEIBULL DISTRIBUTION

I. Introduction

Problem Statement

In the Air Force today, there is a tendency towards

increasing complexity of systems which correspondingly makes

the achieving of high orders of reliability more difficult.

Because of this increasing complexity and the concern over

the ever increasing Defense budget, these reliabilities must

be evaluated by using less testing and more efficient methods

of reliability estimation. As a result, much effort has

been made in establishing methods for predicting reliabili-

ties of complex systems from their component test data.

Since the exact reliability of a component can not be

measured directly, it must be estimated. These estimates

can vary considerably in their accuracy; therefore, it is

necessary that limits be attached to their probable range.

When these limits are determined to a desired degree of

confidence, reliability confidence limits result. It is

meaningless to say that a system is 907o reliable, after

testing its components, without some type of confidence

limit. The purpose of this thesis is to determine these



reliability confidence limits based on test data about

individual components that comprise the system.

Background

In 1960, Orkand (Ref 14) used a Monte Carlo method

for determining lower confidence limits on system reliability.

His study showed the limitations in using only point esti-

mates of component reliability to determine a point estimate

of the system reliability. Bernhoff (Ref 3) explored the

problems of applying analytical approaches to establishing-

system reliability confidence limits. He concluded that

system confidence limits can be obtained analytically if

all components of the system have the same mathematical form

for reliability. If the system reliability is a function of

two or more dissimilar mathematical expressions, the only

practical way of finding the approximate reliability distri-

bution is to use a Monte Carlo technique (Ref 3:49).

Levy (Ref 8) developed a Monte Carlo technique where

components were subjected to life tests and the mathematical

model for component failures was assumed to be of the

Exponential, Normal, Lognormal, Gamma, or Weibull distribu-

to.Moore (Ref 13) extended the Monte Carlo methods to

include those cases where the joint distribution of the

estimators is unknown. He was able to estimate their joint

distribution by use of a technique he developed called

Double Monte Carlo.
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Moore and Levy (Ref 9) designed a digital computer

technique for obtaining system reliability confidence limits

where the system component failures exhibited different

probability densities. It was assumed that the location

parameter is zero or known, that the shape parameter is

known and that the probability density function is given.

With these assumptions, the exact distribution of the maxi-

mum likelihood estimator can be determined.

Lutton (Ref 10) assumed that the component life distri-

butions were known. He gen,-ated reliability samples using

the original Levy (Ref 8) technique and the asympotic dis-

tribution of parameter estimates of the Weibull, Gamma and

Logistic density functions.

Lannon (Ref 7) established reliability confidence

intervals for the Weibull distribution using a bivariate

analysis with the scale and shape parameters unknown.

Most recently, Snead (Ref 18) studied reliability

estimates using the Weibull, Gamma, and Logistic distribution

with the property that the reliability estimators are

asympotically normal. This study required large sample

sizes to perform a univariate analysis using just the relia-

bility parameter. Putz (Ref 15) further developed this

univariate technique by simplifying the bivariate analysis

of Lannon (Ref 7), by mapping the shape and scale parameters

onto the reliability parameter and reducing the sample sizes

of the component test data.
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Rice (Ref 16) incorporated the asymptotic normality

properties of the binomial distribution using a Monte Carlo

technique for estimating lower confidence limits of system

reliability. He also incorporated a technique developed by

Gatliffe (Ref 4), which substituted equivalent failures in

his component failure estimations, when the component

exhibited no failures.

Darrel Thoman, Lee Bain, and Charles Antle (Ref 19)

showed that, assuming the shape and scale parameters are

unknown, location parameter is zero, in the two-parameter

Weibull, that the distribution of the maximum likelihood

estimator of reliability, depends only on the true system

reliability and the sample size.

Reliability

The reliability of a system is defined as the proba-

bility that the system will be operating at some specified

time (t) under specific conditions. If T is the time

to failure or life length of a system or component, the

reliability at time t or R(t) is given by R(t)=P(T>t)

where P means "probability of". The system reliability is

dependent on each component reliability and the system con-

figuration. For example, if the components are connected

serially, the failure of any one of them will cause the

system to fail. If, on the other hand, the components are

connected in parallel, the system will fail only if all com-

ponents or a specified number of them fail.

4



The Weibull Distribution

The Weibull probability density function (pdf) was

originally developed and used by Waloddi Weibull in 1939 in

a study of the phenomenon of rupture in solids. Since that

time, the Weibull pdf has been found to be useful for appli-

cation in lifelength and reliability testing for many mechan-

ical and electronic components. It is frequently assumed

that electronic components are distributed according to the

Exponential distribution. Zelen and Dannemiller (Ref 20:36)

have pointed out that the Exponential distribution is gen-

erally not a robust approximation to the Weibull, especially

if the shape parameter is greater than 1.

The Weibull density function is defined as

k

k- 1 C
f(t;k,O,c) = k(tc) e k,O O; cet (1)

ek

= 0 elsewhere

where e is the scale parameter, k is the shape parameter,

c is the location parameter and t is the time. The scale

parameter affects the dispersion of the random variable t

about its mean. The shape parameter determines whether the

hazard function is increasing, decreasing, or time invariant;

while the location parameter determines the origin (or

guaranteed life). The Weibull distribution can be used to

model the exponential density function, if the shape para-

meter is 1. It can also approximate the Normal distribution
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and the Raleigh distribution when the shape parameter is

scaled at 3.5 or 2.0 respectively. Figure I shows the

flexibility of the Weibull to model Exponential, the Normal

and the Raleigh distributions.

Assumptions

This thesis will concern itself with systems which

have components described by the Weibull pdf. It is assumed

that the components have previously been determined to be

Weibull or that the Weibull pdf adequately models the com-

ponents in the system.

It is assumed that the components of the system being

analyzed fail independently. That is, failure of a given

component within a system does not depend upon either

failure or successful operation of any other component.

The location parameter is assumed to be known and will

be set equal to zero for all cases.

It is assumed that all components have been life

tested and that all unknown parameters of the life distri-

bution have been estimated from the data.

Confidence Limits

It is known that statistical estimates are more

likely to be close to the true value as the sample size

increases. Thus, there is a close correlation between the

accuracy of an estimate and the size of the sample from
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Parameters of 1, 2, and 3.5

which it was obtained. To this extent, in order to obtain

a 100 percent confidence or certainty that a measured

statistical parameter coincides with the true value, an

infinitely large sample size or infinite interval is

required.

When the estimate of a parameter is obtained from a

reasonably sized sample, it may be logically assumed that
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the true value of that parameter will be somewhere in the

neighborhood of the estimate. Therefore, it is more mean-

ingful to express statistical estimates in terms of a range

or interval with an associated probability or confidence

that the true value lies within such an interval, than to

express them as point estimates. This is in fact what is

accomplished when confidence limits are assigned to point

estimates.

Confidence intervals around a point estimate have a

lower confidence limit L and an upper confidence limit U

For example, if it is desired to calculate the confidence

limits for a probability of 90 percent, this means that in

approximately 90 out of 100 cases the true value will lie

within the calculated limits, and approximately 10 cases

will lie outside these limits. Distinguished from this

confidence interval is a confidence level where it is

assured that at some given level, say 10 percent, the true

value lies within the calculated limits. If it is desired

to increase the confidence level to 99 percent, so that in

99 percent of the cases the true value would lie within the

confidence limits, the confidence interval around the point

estimate would become much wider--or a much larger sample

size must be used for the point estimate.

Objective

Compare the relative accuracy and utility of the

modified Double Monte Carlo technique for finding system

8



reliability confidence limits with previously determined

methods using the standard Double Monte Carlo method and

the Univariate and Bivariate asymptotic distributions.

Approach

There must be a known mathematical relationship between

the system reliability and component reliabilities (Ref 13:

459). Hence, the assumption that the components fail inde-

pendently of one another. This allows use of standard

formulas to calculate system reliabilities whether the com-

ponents are connected in series or in parallel. Orkland

describes procedures to apply if there is a dependence rela-

tion among system components (Ref 8:7-8).

A modified Double Monte Carlo technique will be used

to determine reliability estimates and the associated confi-

dence intervals of specific component networks. The unique

feature of this method is that the distribution (joint

distribution) of the estimator(s) for the parameter(s) can

be unknown (Ref 13:461). The Monte Carlo method uses random

sampling to investigate the solution of deterministic or

stochastic problems. In essence, one inserts a set of random

inputs from a specific probability distribution and solves

the problem for each set of inputs to obtain a random

sample of outcomes (Ref 13:459). The steps to this method

are as follows:

9



1. Calculate the maximum likelihood estimators of

the component shape and scale parameters from the component

failure times. Do this for all components.

2. Samples are then generated whose failure have the

same distribution and parameters as the estimated ones and

the same number of observations as the original test data.

These parameters are also estimated by maximum likelihood.

3. Substitute the sample parameter estimates into the

component's reliability equation to derive a sample component

reliability.

4. Repeat steps 1-3 to form an empirical distribution

of component reliability estimates for each component.

5. Generate a point sample compone;.t reliability for

each component from (4).

6. Calculate a point sample of system reliability

from the point sample of component reliability.

7. Repeat steps 5-6 to obtain the desired number of

samples of the system reliability.

8. Order the system reliability samples to obtain a

sample cdf of system reliability from which the confidence

limits are determined at a given confidence level.

The main advantage of the Monte Carlo method is its

usefulness in solving very complicated problems. The disad-

vantage is in its slow convergence and resulting higher

computer costs (Ref 13:459).

10



II. Theoretical Development

Estimators

An estimator is a rule which tells how to calculate

the estimate of something, based upon information contained

in the sample (Ref 2:161). One type of estimator is a point

estimate where a single number, representing the estimate,

may be associated with a point on a line. An example of a

point estimate is the sample mean , where

n
E Yi

_ i=l This estimator of the population mean, pi
n

explains exactly how the actual numerical value of the esti-

mate may be obtained once the sample values y2 .... Yn

are known.

A different problem with multiple parameter estimation

may be stated as follows: Assume that f(t,8 1,e2, ... e k )

is a density with k unknown parameters and let

tl't 2 ,...Itn be a random sample of size n . In the case

of the Weibull pdf, there are three parameters k,O,c

with t1 ,t2 ,... ,tn being sample failure times. The problem

is to find a function of the observed samples which may be

represented by k(tl,t 2 .... Itn), e(t1 ,t2 .... tn), c(t1 ,t 2,

.tn) , such that the distribution of these functions

will approximate, as closely as possible, the true values of

the parameters. Each of these functions will be an estimator

11



of the true value and will be denoted as k, 0, c respec-

tively. (Note: In this thesis the location parameter c

is always assumed to be zero.)

Method of Maximum Likelihood

A very general method of finding point estimates of

parameters is the maximum likelihood estimator (MLE). This

method selects those values of the parameters which maximize

the probability or the joint density (the likelihood) of

the observed sample (Ref 11:302). The likelihood function

can be defined as follows: Let yl'y 2 .... ,yn be sample

observations taken on corresponding random variables,

YIY 2 ..... ,Yn . Then if YI,Y 2,...,Y n are discrete random

variables, the likelihood of the sample, L , is defined

to be the joint probability of yly 2, ... Yn If

YIy 2 ..... Yn are continuous random variables, the likeli-

hood, L , is defined to be the joint density evaluated at

yly2...yn (Ref 11:303). For the Weibull density, the

likelihood function can be represented as:

L = f(t1 ,t 2 ... Ptn; kO,c = 0)

Since there is an assumption that the failure times are
n

independent then L = r f(ti; k,O)
i=l

It is desired to determine k,O , the MLE for k

and 0 respectively, the procedure used in this thesis is

as follows:

12



1. Take the partial derivatives of the natural

logarithm, with respect to each parameter.

2. Set these derivatives equal to zero.

3. Solve simultaneous equations for the values of the

parameters.

Since the Weibull pdf is

k-i
f(t; k,e,c=O) e k(t)k e k,,tO (2)

ok

then

nO-kn n k-I nL = k .e 7r t. )exp(-O-k Z t.) (3)i=l 1 i=l

and

n
in (L) = n In k - nk In 0 + (k-1) Z In t.

i=l 1

6-k n  k
- Z t.k (4)

i=l

Taking the partial derivative of in (L) with respect to

e and k

a In L nk/e + ke -kl n k-e nk e + k t . = 0 (5)
i=l 1

3 In L n

9k -n/k - n in 0 + E Int.
i=l 1

e-k n  k
- E t.k In t. = 0 (6)

3=l

13



Denoting the solutions by k and 0 , Eqs (5) and (6)

may be rewritten as:

n k
E t.

i=1

n (7)

i/ n j n
k= n/[1/0 t. in t. - In ti] (8)i=li 1 i=l

Eqs (7) and (8) are two equations with two unknowns, k

and 0 Simultaneous solution of these equations by an

iterative procedure developed by Harter and Moore (Ref 5)

yields the maximum likelihood estimators of k and 0

Component Reliability

The reliability function, R(t) , may be expressed

as:

R(t) = ff(x)dx (9)

t

where x is dummy variable of integration and f(t) repre-

sents a failure density function. However, if the para-

meters of f(t) are unknown and must be estimated from

data samples, the reliability function itself must be

expressed as an estimate; thus

AA AA

i(t) =  g(t; 8 #8 2, ... , k )

14



Since each component and their associated parameters

are characterized by the Weibull distribution, the relia-

bility function, R(t) , is determined using Eqs (2) and

(9) as:

R(t) = Jk(x)k-1ix IX~~R6k exp [-( x) k]dx

t

which reduces to

R(t) = exp(-(t/) k ) (10)

The MLE of reliability is found by substituting the MLEs

for k and e (k and e) into Eq (10):

R(t) = exp(-(t/6)k) (11)

Each of these estimated component reliabilities can then be

used to estimate a system reliability.

System Reliability

Calculation of system reliability is achieved by using

the laws of probability, given the reliability of each

component. Since it is assumed that the components in each

system or network being analyzed fail independently, the

following equations can be used to obtain an overall system

reliability R (t)s

[Note: Since the component reliabilities are esti-
mates, the system reliability is also an estimate,
R (t) ]

15



1. If the system is composed of two components con-

nected in series, the reliability can be expressed by

Rs (t) = Rl(t).R 2 (t) (12)

where Rl(t) and R 2 (t) are component estimates.

2. If the system is composed of two components con-

nected in parallel, the reliability can be expressed by

R s(t) = 1 - [l-R 1 (t)] [l-R 2 (t)] (13)

= 1 -Qq 2  where Q1 = 1 - Ri(t)

[Note: Q(t) represents the probability that a
component has failed]

More complex systems can be reduced to combinations

of series and/or parallel configurations by use of Bayes'

Theorem or the Boolean Disjunctive Theorem (Ref 7:5-6).

Bias of Reliability Estimate

An important criteria of an estimator is its bias. It

is usually desired that the bias be as small as possible--

approaching zero. The bias, B , is defined as the expected

value of the estimator minus the true value of the parameter

being estimated (Ref 11:266). That is

B = E[R(t)J - R(t)

In a Monte Carlo simulation conducted by Thomas, Bain, and

Antle (Ref 19:365), 10,000 estimates of R(t) using sample

16



sizes of 8 to 100 and true reliabilities of 0.5 to 0.98

were estimated. The E[R(t)] was obtained by averaging

the 10,000 estimates. Subtracting out the true reliability

yielded the bias. Antoon (Ref 1:44) derived 2,000 estimates

of R(t) and calculated the bias for the same range of

sample sizes and true reliabilities as Thomas, Bain, and

Antle. Antoon's results compared favorably and are shown

in Tables I and II.

Median Rank Values

Given an ordered random sample ylY 2,..., yn from a

population having a Weibull cumulative distribution function

F(y) , where y is continuous, estimators can be deter-

mined for F(yl),F(Y 2 ),...,F(Yn) . The distribution for

these estimators, when used in life testing, is commonly

termed the rank distribution. This rank distribution is

derived in the reference and is denoted as follows (Ref 17:

297-298):

n! j-I
(j-l)! (n-j)! Pj (l-P)nJdp. (14)

where 0_p.<l and pj = F(yj) is the fraction of the

population failing prior to the jth ordered observation in

a sample size n , which by differentiating yields

dF(xj) = f(xj)dx dp.

17
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The median value, commonly called the median rank, can

be found by considering the integral:

i P =  g(pj)dpj

0

where g(pj) is defined in Eq (14). The value of x for

which P=0.5 would be the desired median value. An approxi-

mation to this median rank value that was used in this

thesis is given by (Ref 17:300):

x (j-0.3)/(n+0.4) (15)
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III. Procedure

This thesis presents a modified Double Monte Carlo

method for obtaining confidence intervals for the reliability

of various component networks for a specific mission time.

This method will include the bias values and median rank

derivation given in Chapter II.

Double Monte Carlo Method

The Double Monte Carlo Method for obtaining confidence

limits for system reliability is used, as a technique, in

cases where the distribution (joint distribution) of the

estimator(s) for the failure model parameter(s) is unknown.

It is assumed that (Ref 13): (1) the mathematical model for

the underlying failure distribution is known; (2) a mathe-

matical relationship relating system reliability and com-

ponent reliability exists; and (3) the components of the

system have been subjected to life tests and that the para-

meters of the failure model have been estimated.

Using the life test failure times for ea-ch component,

and the estimated parameters of the failure model, samples

are generated whose failures have the same parameters and

distribution, Weibull in this case, as the known or esti-

mated ones. It is important that these new samples have the

same number of observations as the original test data. The

estimates of the new parameters must be obtained via the
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same method, maximum likelihood, and with the same sample

size used on the original sample. These simulated values

of the parameters along with a specified mission time are

substituted in the life distribution to obtain a simulated

reliability, denoted Ri  , for each component.

In order to limit the amount of computer processing

time, a given number of component reliabilities, Ri

will be estimated with the Double Monte Carlo method, for

each component used in a given system. This given number

of Ri will be estimated for each Monte Carlo iteration.

An empirical distribution will be formed for each component

using the derived component reliabilities, Ri ordered

from smallest to largest, as the abscissae with an associ-

ated ordinate axis of ordered median ranks. Recall that

these medium ranks are calculate using Eq (15) which is:

- j-0.3
n + 0.4 (15)

It should be noted that the first and last order statistic

for each component reliability, associated with the median

ranks 0 and 1 respectively, are approximated using linear

extrapolation off of the two sequential order statistics

nearest the first or last Ri  As an example of an empir-

ical distribution see Figure 2. (Note: Each component

reliability is determined with ten sample failures.) These

distributions can then be used to obtain a large number of

estimated component reliability.
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Using the techniques specified in Chapter II, the true

reliabilities can be calculated for each component and for

each system. These true reliabilities will provide an

ab'olute measure against which the modified Double Monte

Carlo method can be gauged.

Calculating/Verifying System Confidence Limits

Given that sample values of system reliability have

been generated, they are then ordered to yield a sample
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cumulative distribution. Using this distribution, the

confidence interval and limits can be approximated at any

level of confidence. For example, in an ordered sample of

1,000 reliability points, the one hundredth value represents

the lower limit of a one sided confidence interval at the

90% confidence level.

The steps for finding confidence intervals about the

true system reliability, using the modified Double Monte

Carlo method and verifying the accuracy of the confidence

levels are as follows:

1. Using the true shape, scale and location para-

meters, generate a simulated sample of test data (component

failure times) from the Weibull distribution.

2. Based on component test data, calculate the maxi-

mum likelihood estimators of the shape and scale parameters.

The location parameter is assumed to be zero.

3. Samples are generated whose failures have the

same distribution and paramete-s as the estimated parameters

in (2) and the same number of observations as the original

test data.

4. The parameters are again estimated from the simu-

lated sample by the same method as used on the original

sample (i.e., maximum likelihood estimates).

5. Substitute these simulated values of the parameters

into the reliability function to obtain a maximum likelihood

estimator of the component reliability.
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6. Subtract the bias from the maximum likelihood

estimator of the reliability, using Table I, to obtain an

unbiased estimator of the component reliability.

7. Repeat steps 3-6 to obtain the desired number of

component reliabilities for the empirical distribution.

8. Sample from this empirical distribution a given

number of uniform random deviates to obtain the desired

number of component reliability estimates.

9. Repeat steps 1-8 for each component.

10. Calculate point samples of system reliabilities

from the point samples of component reliabilities.

11. Order the point samples of system reliabilities

and determine the 99, 95, 90, 80, 70, 60, 50 percent one-

sided confidence intervals. Note if each of these intervals

contains the true system reliability.

12. Repeat step 1-11 until the desired Monte Carlo

size is reached.

13. To measure the accuracy of the confidence limits,

determine the percentage of the runs in which each of the

confidence intervals covered the true system reliability.

Elaboration on each individual step of the technique

is in Appendix A. A flow diagram and computer program which

executes the above modified Double Monte Carlo method are

shown in Appendices B and C respectively.
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Components

Five components were considered in testing the modi-

fied Double Monte Carlo method. The true reliability of

each component, Ri  , is found by substituting into the

Weibull reliability formula, Eq (11). Mission time, t

is arbitrarily set at 100 hours. The following components

were used (Ref 15:22-23):

Component 1

Failure Distribution Weibull
Parameter Values k = 2 0 = 250 c = 0
True Reliability R1 = exp[-(100/250)2 ] = .85214

Component 2

Failure Distribution Weibull
Parameter Values k 3 0 = 210 c = 0
True Reliability R2 = exp[-(100/210) 3 ] = .89765

Component 3

Failure Distribution Weibull
Parameter Values k = 2 6 = 300 c = 0
True Reliability R 3 = exp[-(100/300)'] = .89484

Component 4

Failure Distribution Weibull
Parameter Values k = 3.5 0 = 150 c - 0
True Reliability R4 = exp[-(100/150) 3

.1] = .78512

Component 5

Failure Distribution Weibull
Parameter Values k 2.5 0 = 250 c 0
True Reliability R5 = exp[-(100/250) 25 ] = .90376

Systems to be Analyzed

These five components were combined to form various

kinds of systems. Four different systems were used and are

shown in Figure 3.
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System 1 consists of three components in series. The

true reliability of System 1, R5  , is

R R R R3  (13)

=(.85214)(.89765)(.89484)

=.68448

System 2 consists of one component connected in series

with two in parallel. Let Q be the probability of

failure for component i ,then Qi= 1 - R. Therefore,

Rs2= R 1 (1-Q2Q3 ) (14)

= (.85214)[l-(.10235)(.10516)]

= .84297

System 3 consists of three components connected in

parallel. Hence,

R = 1 - Q IQ2Q3  (15)

1 1- (.14786)(.10235)(.10516)

=.99841

System 4 is a larger complex network of the previous

systems, hence

RS= R I[1-Q2 [1-R 5 (l-Q3Q4 )]] (16)

= .85214[1-.10235[1-.90376(1-(.10516)(.21488)))1

= .84197

28



IV. Results

It is known that the error associated with a Monte

Carlo calculation is proportional to i/Vwhere N is

the number simulations (Ref 17:259). In this case, the

error is statistical, that is, the probable error is pro-

portional to lWN- or the probability is high that the

approximate solution does not deviate from the true solu-

tion by more than a certain amount (Ref 5:22). The amount

of statistical error in a calculation should decrease with

the use of a high speed digital computer, but the computer

can add random errors due to arithmetic roundoff.

Tables III through VI contain the results of the

modified Double Monte Carlo simulation for Systems 1 through

4. The simulation was run for each system with compoient

test data--sample size 10, 15, 20 and 30. In all cases

run, the number of system reliability estimates used to

partition the interval [0,1] was 1000. The empirical

distribution for each component reliability was 75 points.

The numbers specified at each table entry are the percent-

ages of the Monte Carlo runs in which t1he true system

reliability was contained within the simulated confidence

interval. For example, the .9781 in Table Ifi row I sample

size 10, implies that in approximately 97 to 98 percent of
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TABLE III

System 1 Confidence Interval Coverage of
the True System Reliability

Confidence Interval Sample Size
(Percent) 10 15 20 30

99 .9781 .9831 .9910 .9922

95 .9203 .9372 .9371 .9429

90 .8771 .9699 .8702 .8797

80 .7454 .7667 .7689 .7921

70 .6092 .6317 .6209 .6441

60 .4666 .5010 .5011 .5171

50 .3891 .4237 .3788 .3626

TABLE IV

System 2 Confidence Interval Coverage of
the True System Reliability

Confidence Interval Sample Size
(Percent) 10 15 20 30

99 .9600 .9592 .9709 .9777

95 .8781 .9000 .9213 .9346

90 .8003 .8419 .8671 .8779

80 .6811 .7003 .7118 .7135

70 .5602 .5617 .6177 .6389

60 .4765 .4883 .4890 .50,19

50 .3617 3812 .3900 .4371
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TABLE V

System 3 Confidence Interval Coverage of

the True System Reliability

Confidence Interval Sample Size

(Percent) 10 15 20 30

99 .8598 .9017 .9221 .9486

95 .7001 .7786 .7983 .8286

90 .5410 .6443 .6647 .7057

80 .3920 .4892 .4701 .5577

70 .2871 .3337 .3686 .4171

60 .1999 .2209 .2300 .3057

50 .1321 .1437 .1611 .2251

TABLE V1

System 4 Confidence Interval Coverage of
the True System Reliability

Confidence Interval Sample Size
(Percent) 10 15 20 30

99 .9553 .9590 .9692 .9735

95 .8807 .9011 .9273 .9440

90 .8176 .8348 .8600 .8900

80 .7186 .7019 .7231 .7373

70 .5719 .5882 .6147 .6306

60 .4662 .4760 .4081 .4779

50 .3797 .4010 .3980 .4207
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the runs for System 1, the 99 percent confidence interval

contained the true reliability. It can be observed that,

within the limits of the simulation error, as the sample

size increases for all the systems, the confidence interval

coverage improves. In those few cases where it did not

improve, variability of the method can be seen.

There is a noticeable effect of the true system relia-

bility on the confidence interval coverage. It appears

that a lower system reliability corresponds to a more accu-

rate confidence interval. System 1, with a reliability of

.68448, has consistently more accurate confidence interval

coverage than any other system. System 2 and 4, with

reliabilities of .84297 and .84197 respectively, have table

values that correspond closely. System 3, with the highest

reliability, .99841, has the least accuracy.

As an indication of the time that was required to run

these simulations on the CDC Cyber, Table VII specifies

for all systems together, at different sample sizes, the

average amount of time 12, 50 iteration program runs, to

obtain 600 Monte Carlo iterations. That is, each program

that was run contained all 4 systems at a given sample size,

for 50 iterations.

Tables VIII through XI provide a comparison of the

Modified Double Monte Carlo method with the: Univariate

Method (Ref 15:33-34) for all systems at sample size 20;
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TABLE VII

CPU Times on the CDC Cyber

Sample Size

10 15 20 30

1456 sec 1871 sec 2378 sec 2982 sec

Bivariate Method (Ref 5:29) System 4 (only) sample size 20

for 700 Monte Carlo iterations.

For sample size 20, the modified Double Monte Carlo

provides a more consistent coverage of the system relia-

bility at confidence levels of 99, 95 and 90. At the

remaining confidence levels, the univariate is more accurate.

A reason for this is that since the distribution of the

estimators for the parameters is unknown in the Double

Monte Carlo, at the lower confidence limits the distributioh

is such that more reliability points appears in the distri-

bution tails. It can also be noted that in most cases

the confidence interval coverage is low for small sample

sizes. Since there is high or optimistic system reliability

estimates, the lower confidence limits are also too high

and the confidence interval is not wide enough to cover the

true system reliability.

Comparing the modified Double Monte Carlo method with

the bivariate method, it can be seen that the bivariate
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TABLE VIII

System 1 Comparison of Modified Double
Monte Carlo and Univariate

Confidence Interval
(Percent) Univariate Double Monte Carlo

99 .9617 .9910

95 .9050 .9371

90 .8617 .8702

80 .7800 .7689

70 .6817 .6709

60 .5700 .5011

50 .4833 .3788

TABLE IX

System 2 Comparison of Modified Double
Monte Carlo and Univariate

Confidence Interval
(Percent) Univariate Double Monte Carlo

99 .9383 .9709

95 .8600 .9213

90 .8083 .8671

80 .7200 .7118

70 .6467 .6177

60 .5433 .4890

50 .4700 .3900
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TABLE X

System 3 Comparison of Modified Double
Monte Carlo and Univariate

Confidence Interval
(Percent) Univariate Double Monte Carlo

99 .9017 .9221

95 .7950 .7983

90 .7050 .6647

80 .5733 .4701

70 .4617 .3686

60 .3650 .2300

50 .2767 .1611

TABLE XI

System 4 Comparison of Modified Double Monte Carlo
with Univariate and Bivariate

Confidence Interval Double
(Percent) Univariate Monte Carlo Bivariate

99 .9417 .9692 .996

90 .8033 .8600 .926

80 .7183 .7231 .826

70 .6450 .6147 .730

60 .5533 .4681 .604

50 .4733 .3980 .490
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ethod is conservative, confidence interval is wider,

thereby providing a more accurate confidence level that is

much less sensitive to degradation due to high system

reliability.
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V. Conclusions and Recommendations

Conclusions

The modified Double Monte Carlo method developed in

this thesis provides a useful tool for reliability estima-

tion when there is a lack of component test data, that is,

when there are limited test times to failure for a given

component. The modified Double Monte Carlo demonstrates

better results with respect to confidence levels for system

reliability than the univariate case, when the sample size

is small and a higher degree of confidence is required. As

with the univariate case, if there is a high component or

system reliability, the confidence intervals capture the

true reliability to a lesser extent.

It can also be concluded that the skewness of the

empirical distribution of the component reliabilities R(t)

has a definite impact on the results, to the extent that at

the lower confidence intervals more reliabilities are out-

liers in the distribution tails.

The modified Double Monte Carlo method presented in

this study will enable anyone to obtain approximate confi-

dence intervals when the failure models are from the one,

two or three parameter Weibull and the distriLution of the

estimators for the parameters are unknown.
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Recommendations

The modified Double Monte Carlo should be used to

investigate confidence levels when the component reliabil-

ity, R(t) , failure times are modeled by the exponential,

normal or lognormal distribution. Again, this should be

attempted when the sample size is relatively small. Emphasis

could also be placed on component reliabilities greater than

0.9.

Because of the limitation on the component empirical

distribution, sensitivity analysis should be conducted to

see what effect might take place when the distribution size

is increased to 150, 200, and 300 points.
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Appendix A

Notes

The following notes pertain to the steps outlined in

the modified Double Monte Carlo procedure in Chapter III.

Step 1: Weibull-distribution sample failure times

were generated by using the International Mathematical and

Statistical Libraries (IMSL) subroutine GGWIB.

Step 2: The Maximum Likelihood Estimators (MLE) of

the shape and scale parameters (k and 6) were determined

by use of a general solution subroutine of Weibull para-

meters called PARES (Ref 7). In this case, NSAM is the

failure sample size, m = NSAM (i.e., there are no obser-

vations remaining after censoring), MR = 0 no observations

are censored, R is the I-th order statistic of sample

(I = 1, NSAM) (Note: This iterative procedure, in the

case of a Weibull population, is applicable to the most

general case in which all three parameters are unknown and

must be solved simultaneously. It is also applicable to

special cases in which any one or any two of the parameters

are unknown. This is accomplished by specifying combina-

tions of ssl , ss2 , or ss3 equal to one or zero.)

Steps 3, 4: Double Monte Carlo step where the compo-

nent parameters (k,0) are reestimated via MLE.

Step 5: The MLE of component reliability, R(t)

was found by substitution of k and 0 into Eq (11).
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Step 6: The bias of the MLE R(t) was determined

by interpolation (using cubic splines) in Table I.

Step 7: The first and last order statistics of each

component reliability were determined by linear extrapola-

tion on the two nearest reliability points. Subroutine

EXTRA is used for this purpose.

Step 8: A vector of 1000 component reliabilities is

obtained from the empirical distribution using an IMSL

subroutine GGUBS to generate uniform random deviates.

Cubic splines are used to interpolate for the actual com-

ponent reliabilities.

Step 10: The vectors of component reliabilities are

combined using the system reliability equations [Eqs (13),

(14), (15), and (16)]. This results in a vector of ]000

estimated system reliabilities for each system.

Step 11: These system reliability vectors are

ordered in ascending sequence to obtair. the 1, 5, 10, 20,

30, 40, 50 percentiles.

Step 13: If the lower confidence limit is less than

or equal to the true system reliability then the interval

contains the true reliability, subroutine CONLIM is used

for this purpose.

In this thesis, 500 Monte Carlo runs of the simulation

were made in Step 12. For each run and system, it was noted

if the true reliability was contained in the confidence
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intervals. As a comparison, the X percent confidence

interval should contain the true system reliability X

percent of the time. This is the validation of the method.
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Appendix C

Computer Program listing

PROGRAM DOUMC (INPUT, OUTPUT)

C
C ******************************************************************

C * THIS PROGRAM GENERATES, FOR EACH COMPONENT OF ANY SYSTEM, A *

C * SAMPLE SIZE NSAM OF FAILURE TIMES FROM THE WEIBULL DISTRIBUTION*
C * USING THE TRUE PARAMETERS TK(SHIAIE), TTIIETA(SCALE) AND TC *

C * (LOCATION). FROM THIS SAMPLE, THE MAXIMUM LIKELIHOOD *

C * ESTIMATORS (MLES) FOR K AND THETA ARE DERIVED USING HARTER AND *

C * MOORE ITERATIVE SCttEME(PARES). THESE ESTIMATES FOR K AND TIIETA*
C * ARE THEN USED TO GENERATE A NEW SAMPLE SIZE NSAM OF WIEBULL *

C * FAILURES, WHICH ARE IN TURN USED TO RECALCULATE THE MI.ES FOR K *
C * AND THETA. THESE SECOND MIES ARE COMBINEI) TO YIELID CHAT, TIlE *
C * MLE FOR THE COMPONENT RELIABILITY. BIASES FOR THESE ESTIMATES *
C * ARE OBTAINED AND SUBTRACTED. A GIVEN NUMBER (1SAM0) OF THESE *

C * UNBIASED CHAT ARE ESTIMATED WHICH ARE USED TO FORM THlE X-AXIS *
C * FOR AN IMIPRICAL DISTRIBUTION. THE Y-AXIS IS OBTAINED USING A *
C * MEDIAN RANK PROCEDURE. THIS EMIPRICAI. D)ISTRIBUTION IS THAN *

C * USED TO SAMPLE (NGEN) NUMBER O1 COMPONENT RELIABILITIES. THIS *
C * PROCESS IS REPEATED FOR EACH COMPONENT AND THEN RELIABILITIES *
C * ARE COMBINED FOR 4 DIFFERENT SYSTEMS TO YIELD 4 VECTORS OF *

C * SAMPLE SYSTEM RELIABILITIES. TIESE VECTORS ARE THEN ORIDERED *

C * AND THE 99,95,90,80,70,60,50 PERCI;NT LOWER1 CONFIDENCE LIMITS *

C * ARE PICKED (CONLIM). IT IS NOTED IF TIlE TRUE RELIABILITY IS *

C * CONTAINED WITHIN THESE INTERVALS. *

C * THE ABOVE PROCESS IS REPEATED FOR NOLMC MONTE CARLO RUNS WITH *
C * COUNTERS FOR EACH SYSTEM TO TRACK THE NUMBER OF TIMES THAT THE *
C * TRUE RELIABILITY IS CAPTURED. *

C

DIMENTION ARCIIAT(1000,5),ATRS(,4),BI(12,15),BPAR(4),C(4,.I),
1CCHAT(100),fARAM( 3,5),R(500,5),RANK(100),RIBS(12),SCIIA'(1000),

2SMSZ(15),SPLINE(99,3),TEM IP(100),TRC(5),TRS( 1) ,UNII'(1000),
3WK(200),X(2),ZCIHAT(1001,CC(550),''IIETA(550),EK(550)

DOUBLE PRECISIONDSEEI)
INTEGER DSAM

DATA BPAR/O.,O.,O.,O./

DATA RLBS/.5, .55, .6, .65, .7, .75, .8, .85, .9, .925, .95,

1 .98/
DATA SMSZ/8.,9.,10., l.,12.,13.,14.,15.,20.,25.,

1 30.,40.,50.,75.,100./

C
C INITIALIZE VAR IABI.ES***

REA)* , DSEEI) , T
CALL RANSET(T)
TIMEs-O0.
NRLBS- 12
NSMSZT: 15
NMC1 2
NSMSZ 1 =NSMSZ- 1
NRI.BSI -- NRI.BS-I
ISD 12
NGEN 1000
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NSIC99 = 0

NSIC95 = 0

NSIC90 = 0

NSlC80 = 0
NSlC70 = 0

NS1C6O = 0

NSlC50 = 0

NS2C99 = 0

NS2C95 = 0

NS2C90 = 0
,NS2C80 = 0

NS2C70 = 0

NS2C60 = 0

NS2C50 = 0
NS3C99 = 0

NS3C95 = 0

NS3C90 = 0
NS3C80 = 0
NS3C70 = 0

NS3C60 = 0
NS3C50 = 0

NS4C99 = 0

NS4C95 = 0

NS4C90 = 0

NS4C80 = 0

NS4C70 = 0

NS4C6O = 0

NS4C50 = 0

C

WRITE 400

C
C READ SAMPLE SIZE AND NUMBER OF MONTE CARLO RUNS***

C

READ *,NSAM, NOl.MC, I)SAM
WRITE 401,NSAM,NOLMC,D)SAl

C

C SET PARAMETERS FOR PARES AND RANK DISTRIBUTION***
C

M=NSAM
MR=O
RNSAM =NSAM
NNMC2 -DSAA-2

TSAM--DSAM

IC=-DSAM-1
C

C READ TRUE COMPONENT PARAMETERS***
C

READ *,( (PARAM(I,.J),I--I,3),J--1,5)
WRITE 402,((J,(PARAM(I,J),T 1,3),CMPREI.(TIMEPAM(

1PARAM(2,J) ,PARAM(3,J) ) ) ,J+1, 5)
C

C READ BIAS I.EVEI.S***

C 48



READ *,((BI(I,J) ,J-l,15) ,Il1,12)

WRITE 500

WRITE 403,((BI(I,J),J=l,15) ,I=I,12)

C
C CALCULATE MEDIAN RANK DISTRIBUTION***

C
RANK( I )-o.
RANK(1)SAM) I

DO 305 I=1,NNMC2
RANK( I+I )=( I-.3 )/(TSAM+.4)

305 CONTINUE

C THIS LOOP (FROM HERE TO STATEMENT 300) COMPLETES NOI.MC MONTE CARI.O
C RUNS OF THE PROGRAM***
C

DO 300 NCOUNT I,NOLMC

C
***************** *********** * ***** ****** ***** ********* **** *************

C FOR EACH OF 5 COMPONENTS , THIS LJOP GENERATES THE MI.E
C OF CHAT FROM THE MLES OF K AND THETA. IT SUBTRACTS TIlE
C BIAS: ESTABLISHES TIE EM IPRI CAL )ISTRIBUTION AND SAMPLES
C THE GIVEN NUMBER OF COMPONEINT 'ELIABII.ITIES***

DO 200 J 1,5

TK- PARN( I ,l)

TC -PARAM( 3 J)
C
C DETERMINE TRUE COMPONENT REI.IABII.TTY***

TRC(J) CMPREI.(TIIME, TK, TTIIET C

C
C THIS LOOP GENEtRATES THE DESIRED NUMBER OF EMIPRICAL
C DISTRIBUTION POINTS***
C

DO 150 LI. 1,NNMC2

LK- I.
C
C GATHER NSAM FAILURE TIMES FROM TIlE WEIBULL.
C DISTRIBUTION WITH TRUE PARAMETERS TETTItIITA

C AND TC***

220 CAI.I, GGWI B (I)SEEI), TE, NSA ,'EMP

DO 201 I 1,NSAM

R(I, J) TTIIETA*I'EMP I) +TC

201 CONTINUE
CC( 1 )TC
TIETA( I ) -TfIIETA

EK( I )TK
C
C DETERMINE THE MIES FOR THETA AND K***

CALL PARES(NSAM,,' ,CC,TIE'UA ,EK,MR ,TTIETA ,'UK,I(I ,J)
IF(LK.NE. I IGO TO 215

X( I )-TTIIETA
X(2) TK
LK-1,K+ I

GO TO 220
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C
C DETERMINE TUE COMPONENT RELIABILITY USING THE TRUE C
C AND THE TWICE NILES OF K AND THETA***
215 CHAT=CMPREL(TIME,TK,TTHIETA,TC)

TTHETA=X( 1)
TK=X(2)

C
C GIVEN THE MLE OF THE COMPONENT RELIABILITY AND THE
C SAMPLE SIZE, ENTER THE 2-DIMIENSIONAL ARRAY BI
C AND FIND THE BIAS OF THE ESTIMATOR***

DO 203 I=1,NSMSZI
LSMSZ= 1
IF(RNSAM.LE.SMSZ(I+1))GO TO 204

203 CONTINUE
GO TO 205

204 IF(CHAT.LT. .5)GO TO 206
DO 207 I=i,NRLBS1
LRLBS+ I
IF(CIIAT.LE.RLBS(I+1))GO TO 208

207 CONTINUE
GO TO 205

208 CALL IBCICU(B1,ISD,RLBS,NRllBS,SMNSZ,NSMISZ,LRLBS,LSMISZ,C,WK,IEH?)
CALL IBCEVU(RL,BS,NRLBS,SMSZ,NSM'-SZ,LRLBS,LSMSZ,C,CIIAT,RINSAM,
1B1AS,IER)
IF(LRLBS.LT.NRl,BS)GO TO 209

205 BIAS=O.
GO TO 209

206 IF (RNSAM .EQ .SMSZ ( LSz+-1) K Sm4Sz-LSMsz+1
BIAS=BI (1,LSNISZ)

C
C SUBTRACT THE BIAS***
209 ZCHAT(LI.) CHAT-BIAS
150 CONTINUE

C
C ORDER THE RFLIABILITIES FOR THE EMIPRICAL DISTRIB3UTION"*

CALL. VSRTA(XCHIAT', NN.NIC.'
DO 211 1-l,NNNIC2

211 CCHlAT( 1+I) ZCIIAT( I)
C
C FIND THE FIRST ANDI) .A T ORDER STATI STICS FOR THE

C EMIPRICAL I ST RI HI'T I.N COMPONEN.REI.ABI I,ITIEs***
CALL, EXTRA I(CCHAT, HANK,.%%I' I , 0. , T2 , IJSAM)
CCHAT( I ) T2
IF(T2 .l.E.0. )CCIIATl I 10.
CALL EX'IRIA ( CCII.M ', HANK ,.,' I(- N 9 1 .I T2 ,l)SAM)I

CClIAT(DS\%M) T2
IF(T2.GE. I . 1CCIIATI(SAM) I.

C
C SAMPLIE FROM A I IN1T lOUM GENERATOR I NGEN I NUMBER OF
C COMPONENT 10:1.1AlITI 1ES*

CALL. GGUBS (I SEED ,MEN , (I P

CALL. SIC AK CITDAIHA II E*ICIE
CALL ICEV AK CITDA,511NICINIISIA GN,1l
DO 210 KK I,NGEIN
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210 ARCHIAT(KK,J)=SCHiAT(KK)
200 CONTINUE

C
C FOR EACH OF THE 4 SYSTEMS, THE DIFFERENT COMPONENTS ARE
C COMBINED TO YIELD(NGEN) SAMPLES OF THE SYSTEM RELIABILITIES.
C THESE SAMPLES ARE SEQUENCED IN ASCENDING ORDER THE
C COUNTERS KEEP TRACK OF WHEN THE 99,95,90,80,70,60,50
C PERCENT CONFIDENCE INTERVALS CONTAIN THE TRUE SYSTEM
C RELIABILITIES***
C
C SYSTEM 1***

NMC=1
CALL RELI(NMC,TRC,TRS)
ATRS( 1)=TRS( 1)
CALL REl.1 (NGEN ,ARCHAT ,SCHlAT)

CALL VSRTA (SC HAT, NGEN)
CALL CONIM(SCHIAT,TR'IS,NS1C99,N51C95 ,NS1C9O,N51C80,NS1C7O,NSIC6O,

1NS 1C50,NGEN)
C
C SYSTEM 2***

NMC=1
CALL REL.2(NMC,TiC ,TRS)
ATRS(2) TRS( 1
CALL REL2 (NGEN ,ARCllAT ,SCHAT)

CALL VSRTA (SCllAT ,NGEN)

CALL CONLIM(SCIIAT,TRS,N2C99,NS2C95,NS2C90,NS2C80,NS2C7O,NS2CbO,
INS2C50,NGEN)

C
C SYSTEM 3***

NMC=1.
CALL RE.3 (NMC ,TRC ,TRS)

ATRS(3)=TRS( I)
CALL REL3 (NGEN ,ARClHAT, SCLIAT)
CALL VSRTA( SCHAT ,NGLN)

CALL CONLIM(SCIAT,RS,N3C99,NS3C95,NS3C9O,NS3C8O,NS3C70,NS3C60,
1NS3C50,NGEN)

C
C SYSTEM 4***

NMC=1
CALL REL4 (NMC ,TRC ,'TRS)
ATRC(4)=TRS(1)
CALL. REL4 CNGEN ,ARCHAT ,SCHAT)

CALL VSRTA( SCHAT,NGEN)
CALL. CONI.IM( SCIIAT ,TRIS, NS4C99 ,NS4C 95 ,NS4C90 , N4C80 ,NS4C'7(0 %,NSC6O,

1NS4C5O,NGEN)
300 CONTINUE

C
RNOLMC =NOLMC

C FOR SYSTEM 1 , DETFERMINE THE 95, 90, AND 80 PERCENT CONFI DENCE'
C LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PSIC99 N51C99UN01LMC
PSIC95 ' ;1C95/RNOi,MC
PSIC90 NS1C90/RNOI.MC
PSIC8 0 NS C8O /NlV MC 5



PSlC70 = NSIC7O/RNOLMC
PSlC6O = NSlC6O/RNOLNIC
PSlC5O NSIC5O/RNOLMC

C FOR SYSTEM 2, DETERMINE THE 95, 90, AND 80 PERCENT CONFIDENCE
C LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS2C99 =NS2C99/RNOLMC
PS2C95 = NS2C95/RNOLMC
PS2C9O = NS2C9O/RNOLMC
PS2C8O = NS2C80/RNOLMC
PS2C7O = NS2C70/RNOLMC
PS2C6O = NS2C6O/RNOLMC
PS2C5O = NS2C50/RNOIMC

C FOR SYSTEM 3, DETERMINE THE 95, 90, AND 80 PERCENT C0N~IDFNCE..
C LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS3C99 = NS3C99/RN0LMC
PS3C95 = NS3C95/RNOLMC
PS3C90 = NS3C9O/11NOLMC
PS3C8O = NS3C8O/RNOLMC
PS3C7O = NS3C7O/RNOLMC
PS3C60 = NS3C6O/RNOLMC
PS3C50 NS3C5O/RNOLMC

C FOR SYSTEM 4, DETERM-%INE THE 95, 90, AND 80 PERCENT CONFIDENCE
C LIMIT COV"ERAGE OF THE TRUE SYSTEM RELIABILITrY

PS4C99 = NS4C99/1?NOLMC
PS4C95 =NS4C95/RNOI.MC
PS4C90 NS4C9O/fNOl.MC
PS4C8O NS4C80/RNOLMIC
PS4C70 =NS4C7O/RNOMC

PS4C60 =NS4C6,RNOIMC

PS4C50 NS4C50/RNOLMC
PRINT 404
PRINT 405,ATrRs( 1) PS1C99,P 1 C95,PSIC9O,PSIC8 , SIC7, PSC6, 'S IC50

PRINT 406

PRINT 405,ATRS(2) , PS2C 9,1S2C 95,PSPS2C,FS2C 80 IS 2C 7, PS2C60, I'S2C,50

PRINT 407

PRINT 405 ,ATRZS(3) ,PS3C99 ,PS3C9 , PS3C9O , PS3C8) 1'2C70 ,1PS2C60,1'S2C(.U)O
PRINT 408
PRINT 405 ,ATRS (4) ,PS4C99 ,PS4C95 ,IIS4(.90,I)S4C80 ,11S.IC70 ,I)S4C60) lS4(!,
STOP

C

C400 FORINAT("I")
401 FORMAT it"

2 T '~' 25, ''SAMPLE '''S I i;- '' 13, T6,!, , / '

3 T62 , ''h'', / , "' Or'", 722, 'MONTF; CARLO "'"SIZE '',13,!,

4 T62,f*',/, t'a', 721, ''DISTRIBUTION.SIZE ',13,

5 T62, T''' ," *' 62, '', / , 1 , /

6"

7 " "

402 FORMAT (5( 1 X , ''COMPONENT 11,II 6X, ''K If, F4.2,/
1 6X, ''THETA ',F5.0,, 6X, "'Cs', F .0, / fix,

2 ''RELIABILITY '' 7.5, / )
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403 FORMAT ( 15(1X, F7.5)
404 FORMAT ( / " * SYSTEM 1 ****" / " (3 COMPONENTS IN SERI"

1 "ES)" )

405 FORMAT ( / , " TRUE SYSTEM RELIABILITY =", F7.5, /
1 t THE 99 PERCENT CONFIDENCE INTERVAL COVERED ", F6.4,

2 " Oi THE RUNS", / , " THE 95 PERCENT CONFIDENCE INTERVAL COV"

3 "ERED ", F6.4 "OFTHERUNS", / , " THE 90 PERCENT CONFIDENCE I"
4 "NTERVAL COVERED " F6.4, " OF THE RUNS", / , " TIHE 80 PERCE"
5 "NT CONFIDENCE INTERVAL" "COVERED " F6.4 "OFTHERUNDS", /
6 " THE 70 PERCENT CONFIDENCE " "INTERVAL COVERED ", F6.4,
7 " OF THE RUNS", / , " THE 60 PERCENT " "CONFIDENCE INTERVAL"
8 " COVERED ", F6.4, " OF TILE RUNDS", / , " THE", " 50 PERCEN"
9 "T CONFIDENCE INTERVAL COVERED ", F6.4, " OF THE RUNS", / /
9/)

406 FORMAT ( / " ***** SYSTEM 2 ***" / " (1 COMPONENT IN SERIE"
1 "S WITH 2 " "IN PARALLEL)"

407 FORMAT ( / " ***** SYSTEM 3 *'**" / " (3 COMPONENTS IN PARA"

1 "LLEL)" )
408 FORMAT ( / " ***** SYSTEM 4 *****" / " (A 5-COMPONENT COMPLE"

1 "X NETWORK)" )
500 FORMAT (" ", "BIAS OF ESTIMATED COMPONENT RELIABILITY")

END
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FUNCTION CMPREL(TIME,K,TttETA,C)

C
C THIS FUNCTION ROUTINE CALCULATES THE COMPONENT

C RELIABILITIES FROM THE WEIBULL DISTRIBUTION***

REAL K

CMPREL=EXP(-( (TIME-C)/TiIETA)**K)

RETURN

END

SUBROUTINE REL1(NMC,R,RS)

C RELl DETERMINES THE SYSTEM RELIABILITY OF 3 COMPONENTS IN SERIES***

DIMENSION R(NMC,5), RS9NNMC)

DO 10 I=1,NMC

10 RS(I)=R(I,1) * 11(1,2) * R(I,3)

RETURN

END

SUBROUTINE REI,2(NMC,R,RS)

C REL2 DETERMINES THE SYSTEM RELIABILITY OF I COMPONENT IN SERIES

C WITH 2 IN PARALIEL***
DIMENSION R(NM1C,5), RS(NMC)
DO 10 I=1,NMC

10 RS(I)--R(I, 1)*(l1.-(I.-R(I,2) )*(1 ,-R(I,3) ))

RETURN

END

SUBROUTINE REI3 (NMC,R ,IZS)

C REL3 DETERMINES THE SYSTEM RELIABILITY OF 3 COMPONENTS IN PARALLEL***
DIMENSION R(NIC,5) , RS(NMC)
DO 10 I=1,NMC

RETURN

END
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SUBROUTINE REL4 (NMC ,R ,RS)
C REL4 DETERMINES THE SYSTEM RELIABILITY OF A 5 COMPONENT COMPLEX
C NETWORK***

DIMENSION R(NMC,5), RS(NMC)
DO 10 I=1,NMC

10 CONTINUE
RETURN
END

SUBROUTINE EXTRA(X,Y,I,Tl,T2,NNMC)

C THIS SUBROUTINE IS USED TO APPROXIMATE THE FIRST AND LAST ORDER
C STATISTICS OF THE COMPONENT RELIABILITY FOR THE EMIP3RICAL
C DISTRIBUTION"*

DIMENSION X(NNLMC) ,Y(NNMC)
SLOPE=(Y(I±1)-Y(I))/(X(I+1)-X(I))
B=Y( I )SLOPE*X( I)
T2=(TI-B )/SLOPE
RETURN
END

SUBROUTINE CONLIM(R,RS,NI ,N2,N3,N4,N5,N6,N,7,NMC)
C
C THIS SUBROUTINE KEEPS TRACK OF THE NUMBER OF TIMES THE TRUE
C RELIABILITIES IS CONTAINED WITHITN A GIVEN CONFIDENCE INTERVAL"*

DIMENSION R(NMC),RS(1)

IF(R(50) .LE. RS(l)) Nl=Nl+I
IF(R(lOO) LE. RS(l)) N=N3+1
IF(R(200) .LE. RS(l)) N4=N4+1
IF(R(300) .LE. RS(I)) N4=N4+1

IF(R(400) .E. RS(1)) N6-zN6+l
IF(R(500) .LE. RS(l)) N7=N7+1
RETURN
END
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SUBROUTINE PARES(N,M,C,TIIETA,EK,MR,PTI,PEK,T)

C INPUT
C N=SAMPLE SIZE (BEFORE CENSORING),N=100 OR LESS AS

C DIMENSIONED
C SSI=O IF SCALE PARAMETER THETA IS KNOWN
C SS1=1 IF SCALE PARAMETER THETA IS TO BE ESTIMATED

C SS2=0 IF SHAPE PARAMETER K IS KNOWN
C SS2=1 IF SHAPE PARAMETER K IS TO BE ESTIMATED
C SS3=O IF LOCATION PARAMETER C IS KNOWN
C SS3=1 IF LOCATION PARAMETER C IS TO BE ESTIMATED
C T(I)=I-TH ORDER STATISTIC OF SAMPLE (I=1,N)
C M=NUMBER OF OBSERVATIONS REMAINING AFTER CENSORING N-M

C FROM ABOVE
C C(1)=INITIAL ESTIMATE (OR KNOWN VALUE) OF C
C THETA(1)=INITIAL ESTIMATE (OR KNOWN VALUE) OF THETA

C EK(1)=-INITIAL ESTIMATE (OR KNOWN VALUE) OF K
C MR=NUMBER OF OBSERVATIONS CENSORED FROM BELOW
C OUTPUT

C N,SSI,SS2,SS3,M,C(1),TIIETA(1),EK(1),MR

C --SAME AS FOR INPUT
C C(J)=ESTIMATE AFTER J-1 ITERATIONS

C (OR KNOWN VALUE) OF C

C THETA(J)=ESTIMATE AFTER J-1 ITERATIONS

C (OR KNOWN VALUE) OF THETA
C EK(J)=ESTIMATE AFTER J-1 ITERATIONS
C (OR KNOWN VALUE) OF K

C (MAXIMUM VALUE OF J AS PRESENTLY I)IMENSIONED IS 500)
C EL=NATURAL LOG. OF LIKELIHOOD FOR C(J),THETA(J),EK(J)

DIMENSION T(500),C(500),TiHETA(550),EK(550),X(56),Y(55)

SSI=1.
SS2=1.

SS3=0.

IF(N)66,66,104

104 EN=N
IF(M)66,66, 110

110 EM=M

31 ELNM=O.

EMR=MR
MRP=MR+ 1

33 NM=N-M+I

DO 34 I=NM,N

EI=I
34 ELNM-ELNM+ALOG(EI)

IF (MR) 66,35,74

74 DO 75 I1 ,MR
EI=I

75 EI,NM--ELNM-AI,OG(ET)

35 DO 30 J=1,550
IF (J-1) 66,25,37

37 JJ=J-1
SK=O.
SL=O.
DO 6 I=MRP,M

6 SK=SK+(T(l)-C(,JJ))**EK(JJ)
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IF(SS1) 7,7,8
7 THETA(J=THETA(JJ)

GO TO 9
8 IF (MR) 66,19,20
19 THETA(J)=( (SK+(EN-EM)*(T(M)-C(JJ)**EK(JJ)/EM)

C**(1./EK(JJ))
GO TO 9

20 X(1)=THETA(JJ)
LS=O
DO 21 L=1,55
LL=L-1
LP=L+1
X(LP)=X(L)
ZRK=( (T(MRP)-C(JJ) )/X(L) )**EK(JJ)
Y(L)=-EK(JJ)*(EM-EMR)/X(IL)±EK(JJ)*SK/X(L,)**(EK(JJ)+1.)
C+EK(JJ)*(EN-EM)*(T(M)-C(JJ))**EK(JJ)/X(L)**(EK(JJ)+1.
C)-EMR*EK(JJ)*ZInK*EXP(--ZRK)/(X(L)*(1.-.EXP(-ZRK)))
IF (Y(L)) 53,73,54

53 LS=LS-1
IF (LS+L) 58,55,58

54 LS=LS+1
IF (LS-L) 58,56,58

55 X(LP)=.5*X(L)
GO TO 61

56 X(LP)=1.5*X(L)
GO TO 61

58 IF (Y(L)*Y(LL)) 60,73,59
59 LL=LL-1

GO TO 58
60 X(LP)rX(L)+Y(L)*(X(L)-X(LL))/(Y(Ll,)-Y(L))
61 IF (ABS(X(LP)-X(L)-1.E-4) 73,73,21
21 CONTINUE
73 TflETA(J=X(LP)
9 EK(J)kEK(JJ)
10 IF (SS2) 12,12,11
11 DO 17 I=MRP,M
17 SL=Sl,+ALOG(T(I)-C(JJ))

X( 1)=EK(J)
LS=O
DO 51 L=1,55
SLK=O.
DO 18 I=MRP,m

18 SL =IK (IO (rl -(J )AL G TiT (J )* T l -(.)
C**X( L)
Ll,=L-1
LP=L+l
X(LP)=X(L)
ZRK=( (T (MRP)-C(JJ)/TIETA(J)**X(1.)
YWL)(EM-EMR * ( I /X (I.)-AI.OG TlfE~TA (.1)) +SL.-SlK/TI(ETA (J)

C* X I) (N E ) ( IO (IE'(J -l0 ( (H C JJ
C-C(JJ) )**X(L.)/TIIETA( J)**X(L,)+E~lp*ZnK*(AI.OG( /*K)/X(vj)
C*EXP(-ZRK)/( I.-EXPI(-ZRK))

IF(Y(L,)) 43,52,44
43 LS=ILS-1
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IF(LS+L) 47,45,47
44 LS=LS+1

IF (LS-L) 47,46,47
45 X(LP)=.5*X(L)

GO TO 50,
46 X(I;P)=1.5*X(L)

GO TO 50
47 IF (Y(L*Y(LL)) 49,52,48
48 LL=LL-1

GO TO 47

50 IF (ABS(X(LP)-X(L))-.E-4) 52,52,51
51 EK(J)=X(LP)
12 C(J)=~C(jj)
62 IF (SS3) 25,25,14
14 IF (I.-EK(J)) 16,78,78
78 IF (Ssl+SS2) 57,57,16

LS=O
DO 23 L=1,55
SK1=O.
SR=O.
DO 15 I=MRP,M

15 SR=SR+1./(T(I)-X(LL))
LL=L-1
LP=L+l
X(LP)=X(L)
ZRK=((T(MRP)-X(L))/T1IETA(J))**EK(j)

IF (Y(L)) 39,24,40
39 LS=LS-1

IF (LS+L) 70,41,70
40 LS=LS+l

IF (LS-L) 70,42,70
41 X(LP)=.5*X(L)

GO TO 22
42 X(LP)-.5*X(L)+.5*T(l)

GO TO 22
70 IF (Y(L*Y(L1L)) 72,24,71
71 LL=LL-1

GO TO 70

72 X(LP)=-X()+Y(l)*(XL)...1.) )/(Y( 1A-Y(L,)
22 IF (ABS(X(t.P)-X(L)-i.E-4) 24,24,23
23 CONTINUE
24 C(J)=X(LP)

GO TO 25
57 C(J)=T(l)
25 IF (MR) 66,38,69
38 DO 63 I1,M

IF (C(J+1.E-4-T(I)) 68,67,67
67 Mft=MR+l
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63 C(l)-7T(l)
68 IF(MR) 66,69,31

SL=O.
DO 36 I=MRP,M
SK=SK+(T(I)-C(J) )**EK(J)

36 SL=SL ALOG(T(1)-C(J))
ZRK=( (T(MRP)-C(J) )/THIETA(J) )**EK(J)
EL=ELNM+(EM-EMR)*(ALOG(EK (J) )-EK(J)*ALOG(TiETA(J) ))+

C(J)**EK(J) )+EMR*ALOG( 1.-EXP(-ZRK))
150 IF(J-3) 30,27,27
27 IF (ABS(C(J)-C(JJ))-l.E-4) 28,28,30

*28 IF (ABS(TIIETA(J)-TIIETA(JJ))-l.E-4) 29,29,30
*29 IF(ABS(EK(J)-EK(JJ))-1.E-4)126,126,30

30 CONTINUE
126 PTII=THIETA(J)

PEK=EK(J)
GO TO 140

66 PRINT 135

135 FORMAT(1i ,20HAL SAMPLES CENSORED,/)
PEK=O.
PTH-=O.

140 CONTINUE
RETURN
END
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- A modi fied Douib Ic Morin IC(arlo1( technique is deve]loped for deter-
minationi of' lower con tidetiCU limats of system reliability based on
comjponcia test data. 1t, is ISu'il11(d that. the components test data
consists of failu tre t imes, which are (list ributed according to a
known two- pa rame ttr Wei hu I I ti oha l~lu i ty di st r ibut ion . ThIIes e
fail ure times are' ra nda l 9m Iy ge' I aLed iis ing the t ruv slhtpes and
scale p; rameters 1)f the di st rihii11ion. Maximum- likeIi hood]
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estimators are twice obtained for tlie shape~ and pirIe ametficIer-s
and then substi tuted into the rel i i ty e Itia tion to ubhtiin in
-st imtator for the component reil i ah I Ii ty. A g, i yen numibt I- (If I i'-
estimators are .obt ai ned and n -(I to form a n (lII p ricat I (I i.stri hblt I ()I
of reliabilit ies for each coi i ( nenlt. A gi vem number ()f satmnp Ies
from this distribution are ust i- to (-ica Ien e var ioti~~s s.i.em
reliabil ities. Since t1e( Lruii syitem irel iabiIi ty is kno(wln, It (-;II
be determined if at given confi dunct, mt erva I eonklain Ift 11-1tru
number , hence gi vi ng you a method of1 vali dat ing any cnIIdn
interval.
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